Run LXC Ubuntu 22.04 LTS container with bridged network under CentOS Stream 9

In continuation of the previous article Run LXC CentOS Stream 9 container with bridged network under CentOS Stream 9, this time the LXC container will be Ubuntu 22.04 LTS Jammy Jellyfish.
To receive a better understanding why to use LXC or a much detailed information of some steps in this article it is better to visit the previously mention article and the original Run LXC CentOS 8 container with bridged network under CentOS 8.

STEP 1) Install the needed software EPEL repository and the LXC and its dependencies

To install LXC software the EPEL CentOS Stream 9 repository must be installed. At present, the LXC included in CentOS Stream 9 EPEL repository is 4.0.

dnf install -y epel-release
dnf install -y lxc lxc-templates container-selinux
dnf install -y wget tar

lxc-templates uses template “download” to download different Linux distribution images from http://images.linuxcontainers.org/, which now redirects to http://uk.lxd.images.canonical.com/ (an Ubuntu lxd images mirror).
The container-selinux should be installed only if the host, i.e. the CentOS Stream 9 install, is with enabled SELinux. The packages offers additional SELinux rules or for the LXC and LXC tools like lxc-attach and more.

STEP 2) Create a Ubuntu 22.04 LTS with the help of LXC templates

[root@srv ~]# lxc-create --template download -n mycontainer -- --dist centos --release 9-Stream --arch amd64

In addition, there is a “–variant” option along with “--dist” and “--release” to specify which variant to install – default, cloud, desktop or other. There is a variant column in the table on the images’ page mentioned above.
Keep on reading!

Run LXC CentOS Stream 9 container with bridged network under CentOS Stream 9

In continue of the previous article with CentOS 8 – Run LXC CentOS 8 container with bridged network under CentOS 8, here is an updated version with CentOS Stream 9 running LXC container. In this case, the LXC container is CentOS Stream 9, too.
Under CentOS 8, the LXC software is from branch 3.x, but in CentOS Stream 9 the LXC is 4.x and there are some differences in the LXC configuration file.
It’s worth mentioning the differences between docker/podman containers and LXC from the previous article:

  • Multiprocesses.
  • Easy configuration modification. Even hot-plugin supported.
  • Unprivileged Linux containers.
  • Complex network setups. Multiple network interfaces connected to different networks, for example.
  • Live systemd, i.e. systemd or SysV init are booted as usual. Much of the software relies on systemd/udev features and in many cases, it is really hard to run a software without a systemd or init process

Here are the steps to boot a CentOS Stream 9 container under CentOS Stream 9 host server:

STEP 1) Install EPEL repository.

EPEL CentOS Stream 9 repository now includes LXC 4.0 software.

dnf install -y epel-release

STEP 2) Install LXC software and start LXC service.

At present, the LXC software version is 4.0.12. The package lxc-templates includes template scripts to create a Linux distribution environment like CentOS, Ubuntu, Debian, Gentoo, ArchLinux, Oracle, Alpine, and many others and it also includes the configuration templates to start these Linux distributions. In fact, lxc-templates now includes a download script to download images from the Internet.

dnf install -y lxc lxc-templates container-selinux
dnf install -y wget tar

The wget and tar are required if LXC templates installation is going to be performed.
There is an additional package for container’s SELinux, which should be installed before starting the LXC service, because some of the SELinux rules may not apply in the system. If the SELinux is disabled the installation of container-selinux package might be skipped.

STEP 3) Create a CentOS Stream 9 container with the help of LXC templates and run it.

Use the lxc-templates to prepare a CentOS Stream 9 container environment. The currently available containers are listed here http://images.linuxcontainers.org/, which now redirects to http://uk.lxd.images.canonical.com/ (an Ubuntu lxd images mirror). Check out the URL and choose the right container. Here the CentOS Stream 9 amd64, i.e. release 9-Stream, is used.

[root@srv ~]# lxc-create --template download -n mycontainer -- --dist centos --release 9-Stream --arch amd64

In addition, there is a “–variant” option along with “--dist” and “--release” to specify which variant to install – default, cloud, desktop or other. There is a variant column in the table on the images’ page mentioned above.
Keep on reading!

lxc and interface lo does not exist in virtualized server

Virtualizing a real server with an LXC container is pretty easy – do a rsync and run it. Sometimes there are some glitches when starting the LXC container for the first time. Such errors like the following – no networking available at the start, but when attached to the started container it seems to have the network interfaces with no IPs. Even, though it is possible to set the IPs manually the init scripts do not work.

[root@srv ~]# lxc-start -F -n n7763.node-int.info
lxc-start: live300.mytv.bg: start.c: proc_pidfd_open: 1607 Function not implemented - Failed to send signal through pidfd
INIT: version 2.88 booting

   OpenRC 0.12.4 is starting up Gentoo Linux (x86_64) [LXC]

 * /proc is already mounted
 * Mounting /run ... * /run/openrc: creating directory
 * /run/lock: creating directory
 * /run/lock: correcting owner
 * Caching service dependencies ... [ ok ]
 * setting up tmpfiles.d entries for /dev ... [ ok ]
 * Creating user login records ... [ ok ]
 * Wiping /tmp directory ... [ ok ]
 * Bringing up network interface lo ...RTNETLINK answers: File exists
 [ ok ]
 * Updating /etc/mtab ... [ ok ]
 * Bringing up interface lo
 *   ERROR: interface lo does not exist
 *   Ensure that you have loaded the correct kernel module for your hardware
 * ERROR: net.lo failed to start
 * setting up tmpfiles.d entries ... [ ok ]
INIT: Entering runlevel: 3
 * Loading iptables state and starting firewall ... [ ok ]
 * Bringing up interface lo
 *   ERROR: interface lo does not exist
 *   Ensure that you have loaded the correct kernel module for your hardware
 * ERROR: net.lo failed to start
 * Bringing up interface eth0
 *   ERROR: interface eth0 does not exist
 *   Ensure that you have loaded the correct kernel module for your hardware
 * ERROR: net.eth0 failed to start

And it appeared that the old /dev was still in place, which messed up with virtualization and the init scripts.
The solution is simple just

  1. remove the existing /dev
  2. create a new empty one

And the LXC container of the real server will start with a network as usual.

So when virtualizing a real server into LXC container after doing RSYNC of the storage, it is mandatory to create an empty /dev, /proc, and /sys directories!

More on the LXC containers – Run LXC CentOS 8 container with bridged network under CentOS 8.

Debug options for LXC and lxc-start when lxc container could not start

Setup and running LXC container is really easy, but sometimes it is unclear why the LXC container could not start. Most of the time, there is a generic error, which says nothing for the real reason:

root@srv ~ # lxc-start -n test-lxc
lxc-start: test-lxc: lxccontainer.c: wait_on_daemonized_start: 867 Received container state "ABORTING" instead of "RUNNING"
lxc-start: test-lxc: tools/lxc_start.c: main: 306 The container failed to start
lxc-start: test-lxc: tools/lxc_start.c: main: 309 To get more details, run the container in foreground mode
lxc-start: test-lxc: tools/lxc_start.c: main: 311 Additional information can be obtained by setting the --logfile and --logpriority options

No specific reason why the LXC container test-lxc can not be started and the lxc-start command failed. There is just an offer to use the logging options and here is how the administrator of the box may do it by including the following lxc-start options:

-l DEBUG –logfile=test-lxc.log –logpriority=9

Here is a real-world example of an old kernel trying to run LXC 4.0
Keep on reading!